Моделирование и проблема истины
Другое / Моделирование как метод познания окружающего мира / Моделирование и проблема истины
Страница 1

Моделирование необходимо предполагает использование абстрагирования и идеализации. Отображая существенные (с точки зрения цели исследования) свойства оригинала и отвлекаясь от несущественного, модель выступает как специфическая форма реализации абстракции, то есть как некоторый абстрактный идеализированный объект.

При этом от характера и уровней лежащих в основе моделирования абстракций и идеализаций в большой степени зависит весь процесс переноса знаний с модели на оригинал; в частности, существенное значение имеет выделение трёх уровней абстракции, на которых может осуществляться моделирование:

· уровня потенциальной осуществимости (когда упомянутый перенос предполагает отвлечение от ограниченности познавательно-практической деятельности человека в пространстве и времени,);

· уровня «реальной» осуществимости (когда этот перенос рассматривается как реально осуществимый процесс, хотя, быть может, лишь в некоторый будущий период человеческой практики);

· уровня практической целесообразности (когда этот перенос не только осуществим, но и желателен для достижения некоторых конкретных познавательных или практических задач).

На всех этих уровнях, однако, приходится считаться с тем, что моделирование данного оригинала может ни на каком своём этапе не дать полного знания о нём. Эта черта моделирования особенно существенна в том случае, когда его предметом являются сложные системы, поведение которых зависит от значительного числа взаимосвязанных факторов различной природы. В ходе познания такие системы отображаются в различных моделях, более или менее оправданных; при этом одни из моделей могут быть родственными друг другу, другие же могут оказаться глубоко различными. Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки точно определяемых критериев сравнения. Если такие критерии основываются на экспериментальных данных, то возникает дополнительная трудность, связанная с тем, что хорошее совпадение заключений, которые следуют из модели, с данными наблюдения и эксперимента ещё не служит однозначным подтверждением верности модели, так как возможно построение других моделей данного явления, которые также будут подтверждаться эмпирическими фактами. Отсюда — естественность ситуации, когда создаются взаимодополняющие или даже противоречащие друг другу модели явления. Эти противоречия могут «сниматься» в ходе развития науки (и затем появляться при моделировании на более глубоком уровне). Например, на определенном этапе развития теоретической физики при моделировании физических процессов на «классическом» уровне использовались модели, подразумевающие несовместимость корпускулярных и волновых представлений; эта «несовместимость» была «снята» созданием квантовой механики, в основе которой лежит тезис о корпускулярно-волновом дуализме, заложенном в самой природе материи.

Другим примером такого рода моделей может служить моделирование различных форм деятельности мозга [3,7]. Создаваемые модели интеллекта и психических функций — например, в виде эвристических программ для ЭВМ — показывают, что моделирование мышления как информационного процесса возможно как минимум в трёх аспектах: (дедуктивном — формально-логическом, индуктивном и нейролого-эвристическом) для «согласования» которых необходимы дальнейшие логические, психологические, физиологические, эволюционно-генетические и модельно-кибернетические исследования.

Что же следует понимать под истинностью модели? Если истинность вообще — «соотношение наших знаний объективной действительности» [24, C.178], то истинность модели означает соответствие модели объекту, а ложность модели - отсутствие такого соответствия. Такое опpеделение является необходимым, но недостаточым. Тpебуются дальнейшие уточнения, основанные на пpинятие во внимание условий, на основе котоpых модель того или иного типа воспpоизводит изучаемое явление. Напpимеp, условия сходства модели и объекта в математическом моделиpовании, основанном на физических аналогиях, пpедполагающих пpи pазличии физических пpоцессов в моделе и объекте тождество математической фоpмы, в котоpой выpажаются их общие закономеpности, являются более общими,более абстpактными.

Таким обpазом, пpи постpоении тех или иных моделей всегда сознательно отвлекаются от некотоpых стоpон, свойств и даже отношений, в силу чего, заведомо допускается несохpанение сходства между моделью и оpигиналом по pяду паpаметpов, котоpые вообще не входят в фоpмулиpование условий сходства. Так планетаpная модель атома Pезеpфоpда оказалась истинной в pамках (и только в этих pамках) исследования электpонной стpуктуpы атома, а модель Дж.Дж.Томпсона оказалась ложной, так как ее стpуктуpа не совпадала с электpонной стpуктуpой. Истинность — свойство знания, а объекты матеpиального миpа не истинны, не ложны, пpосто существуют. Можно ли говоpить об истинности матеpиальных моделей, если они — вещи, существующие объективно, матеpиально? Этот вопpос связан с вопpосом: на каком основании можно считать матеpиальную модель гносеологическим обpазом? В модели pеализованы двоякого pода знания:

Страницы: 1 2

    Смотрите также

    Философия древнего мира и средневековья
      ...

    Учение Лейбница
    Краеугольным камнем всего учения Лейбница была попытка объединения современной ему науки и философии с идеями и достижениями древних, в первую очередь греческих мыслителей и ученых. Лейбниц был кате ...

    Введение
      В истории философии не так уж много примеров, чтобы в деятельности и произведениях одного и того же лица сочетались эпохальные научные открытия и глубочайшие философские идеи, составляющие ...

    Разделы