Идеи Томаса Брадвардина
Другое / Идеи Гроссетеста, Роджера Бэкона и Брадвардина в естествознании позднего средневековья / Идеи Томаса Брадвардина
Страница 2

Насколько эта противоположность была принципиальной также и для средневековой науки, свидетельствует, в частности, трактат математика Брадвардина (XIV в.) о континууме, где показано, к каким противоречиям приводит попытка составления континуума из неделимых (т.

е. из точек).

"Английские (Т.Брадвардин, Р.Суайнсхед и др.), а также французские (особенно Н.Оресм) ученые XIV в., - отмечал А.П.Юшкевич, - предпринимают смелую попытку подвергнуть с помощью инфинитезимальных идей квантификации квалитативную в своей основе натурфилософию перипатетиков. Прежде всего - и это оказалось особенно важным для дальнейшего - по новому осмысливаются те разделы "Физики" Аристотеля, в которых рассматриваются соотношения между силой и движением, силой и сопротивлением; иными словами перестраивается перипатетическая механика; вслед за тем математическому рассмотрению подвергаются любые виды изменения непрерывных, а частью и кусочно-разрывных измеримых величин или, в терминологии перипатетиков, интенсификации - усиления и ремиссии - ослабления всякого рода "форм" или качеств - теплоты, цвета и т.д., но также доброты, греховности и т.п., переменная интенсивность которых зависит от их экстенсивности - распределения интенсивностей на конечных или бесконечных интервалах в пространстве либо времени. К категории форм относится и простейшее механическое движение, т.е. пространственное перемещение".

В новом социо-культурном контексте математика низвергается с пьедестала "вечности", уступая место теологии, толкующей о действительно вечном и абсолютном. От этого с, одной стороны, выигрывает естествознание, разумеется не сразу, но предпосылки математического естествознания складываются уже тогда, достаточно упомянуть, что в Охсфорде и Париже "формируется идея о переменности - течении (fluxus) величин, о мгновенных скорости и ускорении, для которых вводятся соответствующие, даже латинские, термины и в совершенно отвлеченном, не связанном с физикой плане, доказывается основной закон и другие свойства равномерно ускоренного движения".

И, с другой стороны, что для нас особенно важно, допуск в математику представлений об изменении, движении способствует преодолению кругов невидимых, но властных, препятствовавших самой возможности появлению математики, имеющей дело с изменяющимися, перетекающими друг в друга, переменными величинами.

Дунс Скот отмечал, что если рассматривать отрезок как актуально бесконечную совокупность его составляющих точек, то придется согласиться с равенством таких, например, отрезков, как сторона и диагональ квадрата, что, по его мнению, абсурдно. Подобные примеры приводит в своем трактате о континууме и Брадвардин, отмечая, что представление

о континууме, составленном из неделимых (т.е. из точек) приводит к неразрешимым парадоксам.

Страницы: 1 2 

    Смотрите также

    Философия Лейбница
      Лейбниц был первым из великих немецких философов. Он также был первым из своих соотечественников, кто предложил всеобъемлющую философскую систему, ставшую одной из отличительных черт немец ...

    Что такое философия?
      ...

    Учение о человеке (философская антропология) При мысли великой, что я человек, всегда возвышаюсь душой.
      ...

    Разделы